The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiroshi HARA(120hit)

41-60hit(120hit)

  • Enhanced Universal Filtered-DFTs-OFDM for Long-Delay Multipath Environment Open Access

    Yuji MIZUTANI  Hiroto KURIKI  Yosuke KODAMA  Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/08
      Vol:
    E103-B No:4
      Page(s):
    467-475

    The conventional universal filtered-DFT-spread-OFDM (UF-DFTs-OFDM) can drastically improve the out-of-band emission (OOBE) caused by the discontinuity between symbols in the conventional cyclic prefix-based DFTs-OFDM (CP-DFTs-OFDM). However, the UF-DFTs-OFDM degrades the communication quality in a long-delay multipath fading environment due to the frequency-domain ripple derived from the long transition time of the low pass filter (LPF) corresponding to the guard interval (GI). In this paper, we propose an enhanced UF-DFTs-OFDM (eUF-DFTs-OFDM) that achieves significantly low OOBE and high communication quality even in a long-delay multipath fading environment. The eUF-DFTs-OFDM applies an LPF with quite short length in combination with the zero padding (ZP) or the CP process. Then, the characteristics of the OOBE, peak-to-average power ratio (PAPR), and block error rate (BLER) are evaluated by computer simulation with the LTE uplink parameters. The result confirms that the eUF-DFTs-OFDM can improve the OOBE by 22.5dB at the channel-edge compared to the CP-DFTs-OFDM, and also improve the ES/N0 to achieve BLER =10-3 by about 2.5dB for QPSK and 16QAM compared to the UF-DFTs-OFDM. For 64QAM, the proposed eUF-DFTs-ODFDM can eliminate the error floor of the UF-DFTs-OFDM. These results indicate that the proposed eUF-DFTs-OFDM can significantly reduce the OOBE while maintaining the same level of communication quality as the CP-DFTs-OFDM even in long-delay multipath environment.

  • Data Compression and Interpolation of Multi-View Image Set

    Toshiaki FUJII  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E77-D No:9
      Page(s):
    987-995

    This paper is concerned with the data compression and interpolation of multi-view image set. In this paper, we propose a novel disparity compensation scheme based on geometric relationship. We first investigate the geometric relationship between a point in the object space and its projection onto view images. Then, we propose the disparity compensation scheme which utilize the geometric constraints between view images. This scheme is used to compress the multi-view image into the structure of the triangular patches and the texture data on the surface of patches. This scheme not only compresses the multi-view image but also synthesize the view images from any viewpoints in the viewing zone. Also, this scheme is fast and have compatibility with 2-D interframe coding. Finally, we report the experiment, where two sets multi-view image were used as original images and the amount of data was reduced to 1/19 and 1/20 with SNR 34 dB and 20 dB, respectively.

  • FOREWORD

    Hiroshi HARADA  Alistair MUNRO  

     
    FOREWORD

      Vol:
    E88-A No:7
      Page(s):
    1771-1771
  • Spectrum Sensing Architecture and Use Case Study: Distributed Sensing over Rayleigh Fading Channels

    Chen SUN  Yohannes D. ALEMSEGED  Ha Nguyen TRAN  Hiroshi HARADA  

     
    PAPER-Spectrum Sensing

      Vol:
    E92-B No:12
      Page(s):
    3606-3615

    To realize dynamic spectrum access (DSA), spectrum sensing is performed to detect the presence or absence of primary users (PUs). This paper proposes a sensing architecture. This architecture enables use cases such as DSA with PU detection using a single spectrum sensor and DSA with distributed sensing, such as cooperative sensing, collaborative sensing, and selective sensing. In this paper we focus on distributed sensing. These sensing schemes employ distributed spectrum sensors (DSSs) where each sensor uses energy detection (ED) in Rayleigh fading environment. To theoretically analyze the performance of the three sensing schemes, a closed-form expression for the probability of detection by ED with selective combining (SC) in Rayleigh fading environment is derived. Applying this expression to the PU detection problem, we obtain analytical models of the three sensing schemes. Analysis shows that at 5-dB signal-to-noise ratio (SNR) and with a false alarm rate of 0.004, the probability of detection is increased from 0.02 to 0.3 and 0.4, respectively, by cooperative sensing and collaborative sensing schemes using using three DSSs. Results also show that the selected sensing scheme matches the performance of the collaborative sensing scheme. Moreover, it provides a low false alarm rate.

  • 0.4-5.8 GHz SiGe-MMIC Quadrature Modulator Employing Self Current Controlled Mixer for Cognitive Radio

    Shintaro SHINJO  Fumiki ONOMA  Koji TSUTSUMI  Noriharu SUEMATSU  Mitsuhiro SHIMOZAWA  Hiroshi HARADA  

     
    PAPER-Wideband RF Systems

      Vol:
    E92-B No:12
      Page(s):
    3701-3710

    A 0.4-5.8 GHz SiGe-MMIC quadrature modulator (Q-MOD) employing a self current controlled mixer for cognitive radio is described. The self current controlled mixer consists of a Gilbert cell mixer and a self current control circuit which is composed of both a current feedback circuit and an output buffer amplifier. The self current control circuit automatically controls the mixer current according to the output power level, and improves the linearity over wide radio frequency (RF) range. Simulation results show that the proposed Q-MOD realizes 1 dB compression point (P1 dB) improvement of more than 3.0 dB compared to the conventional Q-MOD at the frequencies of 0.4, 0.8, 1.95, 5.2 and 5.8 GHz. The fabricated Q-MOD achieves P1 dB improvement of more than 2.8 dB under the same condition. It also improves the output power with error vector magnitude (EVM) of 3.0% (Pout@EVM=3.0%), and achieves the Pout improvement of more than 2.7 dB under the modulation conditions of UHF wireless system (OFDM/16QAM, 0.4 GHz), W-CDMA (HPSK/QPSK, 0.8 GHz/1.95 GHz) and wireless-LAN (OFDM/64QAM, 5.2 GHz/5.8 GHz).

  • Implementation and Performance Evaluation of a Distributed TV White Space Sensing System

    Ha-Nguyen TRAN  Yohannes D. ALEMSEGED  Hiroshi HARADA  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    305-313

    Spectrum sensing is one of the methods to identify available white spaces for secondary usage which was specified by the regulators. However, signal quality to be sensed can plunge to a very low signal-to-noise-ratio due to signal propagation and hence readings from individual sensors will be unreliable. Distributed sensing by the cooperation of multiple sensors is one way to cope with this problem because the diversity gain due to the combining effect of data captured at different position will assist in detecting signals that might otherwise not be detected by a single sensor. In effect, the probability of detection can be improved. We have implemented a distributed sensing system to evaluate the performance of different cooperative sensing algorithms. In this paper we describe our implementation and measurement experience which include the system design, specification of the system, measurement method, the issues and solutions. This paper also confirms the performance enhancement offered by distributed sensing algorithms, and describes several ideas for further enhancement of the sensing quality.

  • Incremental Segmentation of Moving Pictures--An Analysis by Synthesis Approach--

    Hiroyuki MORIKAWA  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E76-D No:4
      Page(s):
    446-453

    We describe an approach to describe moving pictures in terms of their structural properties for video editing, video indexing, and video coding. The description contains 2D shape, motion, spatial relation, and relative depth of each region. To obtain the description, we develop the incremental segmentation scheme which includes dynamic occlusion analysis to determine relative depths of several objects. The scheme has been designed along the analysis-by-synthesis" approach, and uses a sequence of images to estimate object boundaries and motion information successively/incrementally. The scheme consists of three components: motion estimation, prediction with dynamic occlusion analysis, and update of the segmentation results. By combining the information from extended (longer) image sequences, and also by treating the segmentation and dynamic occlusion analysis simultaneously, the scheme attempts to improve successively over time the accuracy of the object boundary and motion estimation.

  • A New Estimation Method of Propagation Characteristics Using Pilot-Data-Inserted OFDM Signals for High-Mobility OFDM Transmission Scheme

    Hiroshi HARADA  Takako YAMAMURA  Masayuki FUJISE  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    882-894

    A method for estimating propagation characteristics is described that uses the characteristics of pilot-data-inserted orthogonal frequency division multiplexing (OFDM) signal and is suitable for high-mobility OFDM transmission scheme. Several pilot data are inserted periodically along the frequency axis before the inverse fast Fourier transformation (IFFT) process in the transmitter. At the receiver, the received OFDM signal is correlated with a prepared distinctive OFDM signal in which several pilot data are inserted in the same positions as in the transmitted OFDM symbols and zeros are inserted in the other positions. The propagation characteristics can be estimated precisely and used to cancel any interference caused by delayed waves. Computer simulation shows that this method can estimate the propagation characteristics, which can then be used to cancel the interference caused by delayed waves before the FFT at the receiver under fast multipath fading conditions.

  • Performance Evaluation of Time Alignment Control under High-Mobility Environment for Dynamic Parameter Controlled OF/TDMA

    Ryota KIMURA  Ryuhei FUNADA  Hiroshi HARADA  Shoji SHINODA  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    541-551

    This paper proposes a time alignment control (TAC) for reducing an influence of multiple access interference (MAI) due to propagation delays (PDs) in uplink transmission from multiple mobile stations (MSs) to an access point (AP) for an orthogonal frequency division multiple access (OFDMA) based mobile communication system. In addition, this paper presents our evaluation of the proposed TAC as applied to dynamic parameter control orthogonal frequency and time division multiple access (DPC-OF/TDMA) which has been suggested for use in new generation mobile communication system. This paper also proposes several formats for an activation slot (ACTS) in which the GIs are lengthened in order to avoid the MAI because the TAC cannot be performed yet in an initial registration of the MSs. Computer simulation elucidates that lengthening the GIs of data symbols in the ACTS adequately to compensate a maximum delay improves the transmission performance of the ACTS at the initial registration without PDs compensation. The simulation also elucidates that the proposed TAC is performed to reduce the influence of the MAI effectively and that updating the estimates of the PDs every certain period is needed to compensate the PDs accurately under high-mobility environment.

  • Subband Selection and Handover of OFDMA System over Frequency Selective Channel

    Jianfeng QIANG  Hiroshi HARADA  Hiromitsu WAKANA  Ping ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:4
      Page(s):
    1718-1724

    Multipath propagation of radio signal introduces frequency selectivity. OFDMA systems greatly suffer from frequency selective fading. It is an important limit factor of performance of OFDMA systems, especially in subband based multiple user access scehems. In this paper, we propose the method of subband selection and handover to improve the system performance over the frequency selective channel. Two subband selection algorithms are presented to accurately select the subband with high channel gain and avoid the channel notch. The random access procedure employing subband selection is presented as an example. The effects of the subband selection are also given. The selection effectively improves the performances of frame synchronization, frequency synchronization, channel estimation, and bit error rate (BER). The investigations show that the proposed scheme is promising to reliable communications over frequency selective fading channel.

  • Exact Error Rate Analysis for Pulsed DS- and Hybrid DS/TH-CDMA in Nakagami Fading

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Hisakazu KIKUCHI  Hiroshi HARADA  Shuzo KATO  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3150-3162

    Exact bit error probabilities (BEP) are derived in closed-form for binary pulsed direct sequence (DS-) and hybrid direct sequence time hopping code division multiple access (DS/TH-CDMA) systems that have potential applications in ultra-wideband (UWB) communications. Flat Nakagami fading channel is considered and the characteristic function (CF) method is adopted. An exact expression of the CF is obtained through a straightforward method, which is simple and good for any arbitrary pulse shape. The CF is then used to obtain the exact BEP that requires less computational complexity than the method based on improved Gaussian approximation (IGA). It is shown under identical operating conditions that the shape of the CF, as well as, the BEP differs considerably for the two systems. While both the systems perform comparably in heavily faded channel, the hybrid system shows better BEP performance in lightly-faded channel. The CF and BEP also strongly depend on chip length and chip-duty that constitute the processing gain (PG). Different combinations of the parameters may result into the same PG and the BEP of a particular system for a constant PG, though remains nearly constant in a highly faded channel, may vary substantially in lightly-faded channel. A comparison of the results from the exact method with those from the standard Gaussian approximation (SGA) reveals that the SGA, though accurate for both the systems in highly-faded channel, becomes extremely optimistic for low-duty systems in lightly-faded channel. The SGA also fails to track several other system trade-offs.

  • Autonomous and Decentralized Optimization of Large-Scale Heterogeneous Wireless Networks by Neural Network Dynamics

    Mikio HASEGAWA  Ha Nguyen TRAN  Goh MIYAMOTO  Yoshitoshi MURATA  Hiroshi HARADA  Shuzo KATO  

     
    PAPER-Distributed Optimization

      Vol:
    E91-B No:1
      Page(s):
    110-118

    We propose a neurodynamical approach to a large-scale optimization problem in Cognitive Wireless Clouds, in which a huge number of mobile terminals with multiple different air interfaces autonomously utilize the most appropriate infrastructure wireless networks, by sensing available wireless networks, selecting the most appropriate one, and reconfiguring themselves with seamless handover to the target networks. To deal with such a cognitive radio network, game theory has been applied in order to analyze the stability of the dynamical systems consisting of the mobile terminals' distributed behaviors, but it is not a tool for globally optimizing the state of the network. As a natural optimization dynamical system model suitable for large-scale complex systems, we introduce the neural network dynamics which converges to an optimal state since its property is to continually decrease its energy function. In this paper, we apply such neurodynamics to the optimization problem of radio access technology selection. We compose a neural network that solves the problem, and we show that it is possible to improve total average throughput simply by using distributed and autonomous neuron updates on the terminal side.

  • A Novel Method of Estimating the Signal-to-Interference Ratio for One-Cell-Frequency-Reuse OF/TDMA Systems

    Masafumi MORIYAMA  Hiroshi HARADA  Seiichi SAMPEI  Ryuhei FUNADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    247-257

    In one-cell-frequency-reuse Orthogonal Frequency Division Multiple Access based Time Division Multiple Access (OF/TDMA) systems, communication is blocked by interference from adjacent cells. The most promising solution would be an adaptive modulation and coding scheme that is controlled by estimating the signal-to-interference ratio (SIR). However, there has so far been no way to accurately estimate the SIR using the spreading codes for OF/TDMA systems, because of the asynchronous fast Fourier transform (FFT). In this paper, we propose a novel SIR estimation method that uses a spread pulse-wave symbol and carrier interferometry. Moreover, to introduce multi- input multi-output systems, we modify the proposed method by allocating a different spreading code to each cell. Computer simulation confirmed that the SIR is estimated accurately even if the FFT is asynchronous. On cell boundaries, the average estimation errors that are a ratio between accurate and estimated propagation characteristics are less than 2 dB.

  • Multi-Dimensional Lossy Coding via Copying with Its Practical Application to Interframe Low-Rate Video Compression

    Takahiro SAITO  Ryuji ABE  Takashi KOMATSU  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E74-A No:9
      Page(s):
    2513-2522

    We have recently extended one of the conceptions of the lossless universal pattern-matching coding, viz. the concept of coding via copying, to multi-dimensional lossy coding, and applied the extended concept to intraframe compression of still images. The work herein applies the extended concept of lossy coding via copying to interframe low-rate video compression, thus developing a novel low-rate interframe PMIC (pattern-matching image coding) technique, which produces the effect of generalizing the definition of a search area used in the existing block-matching motion compensation. We have experimentally shown the performance gain provided by the generalization within the framework of lossy coding via copying, and demonstrated that the interframe PMIC technique is usefull and potential as a basic means for low-rate video compression.

  • Error Probability of MRC in Frequency Selective Nakagami Fading in the Presence of CCI and ACI

    Mohammad Azizur RAHMAN  Chin-Sean SUM  Ryuhei FUNADA  Shigenobu SASAKI  Tuncer BAYKAS  Junyi WANG  Hiroshi HARADA  Shuzo KATO  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2679-2687

    An exact expression of error rate is developed for maximal ratio combining (MRC) in an independent but not necessarily identically distributed frequency selective Nakagami fading channel taking into account inter-symbol, co-channel and adjacent channel interferences (ISI, CCI and ACI respectively). The characteristic function (CF) method is adopted. While accurate analysis of MRC performance cannot be seen in frequency selective channel taking ISI (and CCI) into account, such analysis for ACI has not been addressed yet. The general analysis presented in this paper solves a problem of past and present interest, which has so far been studied either approximately or in simulations. The exact method presented also lets us obtain an approximate error rate expression based on Gaussian approximation (GA) of the interferences. It is shown, especially while the channel is lightly faded, has fewer multipath components and a decaying delay profile, the GA may be substantially inaccurate at high signal-to-noise ratio. However, the exact results also reveal an important finding that there is a range of parameters where the simpler GA is reasonably accurate and hence, we don't have to go for more involved exact expression.

  • Introduction to IEEE P1900.4 Activities Open Access

    Soodesh BULJORE  Markus MUCK  Patricia MARTIGNE  Paul HOUZE  Hiroshi HARADA  Kentaro ISHIZU  Oliver HOLLAND  Andrej MIHAILOVIC  Kostas A. TSAGKARIS  Oriol SALLENT  Gary CLEMO  Mahesh SOORIYABANDARA  Vladimir IVANOV  Klaus NOLTE  Makis STAMETALOS  

     
    INVITED PAPER

      Vol:
    E91-B No:1
      Page(s):
    2-9

    The Project Authorization Request (PAR) for the IEEE P1900.4 Working Group (WG), under the IEEE Standards Coordinating Committee 41 (SCC41) was approved in December 2006, leading to this WG being officially launched in February 2007 [1]. The scope of this standard is to devise a functional architecture comprising building blocks to enable coordinated network-device distributed decision making, with the goal of aiding the optimization of radio resource usage, including spectrum access control, in heterogeneous wireless access networks. This paper introduces the activities and work under progress in IEEE P1900.4, including its scope and purpose in Sects. 1 and 2, the reference usage scenarios where the standard would be applicable in Sect. 4, and its current system architecture in Sect. 5.

  • White Space Communication Systems: An Overview of Regulation, Standardization and Trial Open Access

    Hiroshi HARADA  

     
    INVITED PAPER

      Vol:
    E97-B No:2
      Page(s):
    261-274

    This paper summarizes the current status of regulations, standardization efforts and trials around the world regarding white space (WS) communications, especially television band WS (TVWS). After defining WS communication systems configurations and function and the categories of white space database, the TVWS regulations in United States, United Kingdom, and Japan are summarized. Then regarding status of standardization for TVWS devices, IEEE 802 and IEEE 1900 standards are summarized. Finally ongoing pilot projects and trials of WS communications in the world are summarized, and trends and future direction of research on WS communication systems are summarized.

  • Robust Spectrum Sensing Algorithms for Cognitive Radio Application by Using Distributed Sensors

    Yohannes D. ALEMSEGED  Chen SUN  Ha Nguyen TRAN  Hiroshi HARADA  

     
    PAPER-Spectrum Sensing

      Vol:
    E92-B No:12
      Page(s):
    3616-3624

    Due to the advancement of software radio and RF technology, cognitive radio(CR) has become an enabling technology to realize dynamic spectrum access through its spectrum sensing and reconfiguration capability. Robust and reliable spectrum sensing is a key factor to discover spectrum opportunity. Single cognitive radios often fail to provide such reliable information because of their inherent sensitivity limitation. Primary signals that are subject to detection by cognitive radios may become weak due to several factors such as fading and shadowing. One approach to overcome this problem is to perform spectrum sensing by using multiple CRs or multiple spectrum sensors. This approach is known as distributed sensing because sensing is carried out through cooperation of spatially distributed sensors. In distributed sensing, sensors should perform spectrum sensing and forward the result to a destination where data fusion is carried out. Depending on the channel conditions between sensors (sensor-to-sensor channel) and between the sensor and the radio (user-channel), we explore different spectrum sensing algorithms where sensors provide the sensing information either cooperatively or independently. Moreover we investigate sensing schemes based on soft information combining (SC), hard information combining (HC). Finally we propose a two-stage detection scheme that uses both SC and HC. The newly proposed detection scheme is shown to provide improved performance compared to sensing based on either HC or SC alone. Computer simulation results are provided to illustrate the performances of the different sensing algorithms.

  • Implementation of Multi-Channel Modem for DSRC System on Signal Processing Platform for Software Defined Radio

    Akihisa YOKOYAMA  Hiroshi HARADA  

     
    PAPER

      Vol:
    E89-B No:12
      Page(s):
    3225-3232

    We previously proposed an architecture for software defined radio called the reconfigurable packet routing-oriented signal processing platform (RPPP). This architecture was suited to wireless signal processing applications, which require radio functions to be selected in real time depending on the transmitted signal. A number of radio standards are used in DSRC systems for vehicle communication and vehicle equipment is required to transmit and receive the radio signals used on each particular occasion. An implementation of RPPP is described in this paper that enables the dynamic handling of two ARIB standards for DSRC. After an explanation of the basic architecture and an analysis of RPPP, the implementation of a reconfigurable DSRC transceiver for ASK and π/4 shift-QPSK is described. The implementation is then discussed, evaluated in terms of the number of logic units needed. We concluded that our platform is 27.6% more efficient in utilizing logic than that achieved with fixed design.

  • Reduced-Complexity Detection for DPC-OF/TDMA System Enhanced by Multi-Layer MIMO-OFDM in Wireless Multimedia Communications

    Ming LEI  Hiroshi HARADA  

     
    PAPER-Communications

      Vol:
    E90-A No:3
      Page(s):
    571-580

    During these years, we have been focusing on developing ultra high-data-rate wireless access systems for future wireless multimedia communications. One of such kind of systems is called DPC-OF/TDMA (dynamic parameter controlled orthogonal frequency and time division multiple access) which targets at beyond 100 Mbps data rate. In order to support higher data rates, e.g., several hundreds of Mbps or even Gbps for future wireless multimedia applications (e.g., streaming video and file transfer), it is necessary to enhance DPC-OF/TDMA system based on MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) platform. In this paper, we propose an enhanced DPC-OF/TDMA system based on Multi-Layer MIMO-OFDM scheme which combines both diversity and multiplexing in order to exploit potentials of both techniques. The performance investigation shows the proposed scheme has better performance than its counterpart based on full-multiplexing MIMO-OFDM scheme. In addition to the Exhaustive Detection (EXD) scheme which applies the same detection algorithm on each subcarrier independently, we propose the Reduced-Complexity Detection (RCD) scheme. The complexity reduction is achieved by exploiting the suboptimal Layer Detection Order and subcarrier correlation. The simulation results show that huge complexity can be reduced with very small performance loss, by using the proposed detection scheme. For example, 60.7% complexity can be cut off with only 1.1 dB performance loss for the 88 enhanced DPC-OF/TDMA system.

41-60hit(120hit)